

Available online at www.sciencedirect.com

Journal of Hazardous Materials

Journal of Hazardous Materials 157 (2008) 201-206

www.elsevier.com/locate/jhazmat

Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment

Cheng-Hsien Tsai*, Jen-Min Shao

Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 807, Taiwan, ROC

Received 6 December 2007; received in revised form 4 January 2008; accepted 4 January 2008 Available online 12 January 2008

Abstract

In this study, a large amount of toxic and reactive fluorine (F_2) was produced in the atmospheric-pressure microwave discharge environment by adding additives to abate sulfur hexafluoride (SF₆). When H₂ was added, the selectivity of F₂ was as high as 89.7% at inlet H₂/SF₆ molar ratio (R_{H_2}) = 1. Moreover, the conversion of SF₆ significantly increased from 33.7% (without additive) to 97.7% (R_{H_2} = 5) at [SF₆] = 1%, and 0.8 kW because the addition of H₂ inhibited the recombination of SF₆. With the addition of O₂, H₂ + O₂ or H₂O, the selectivity of F₂ was still greater than 81.2%, though toxic byproducts, including SO₂F₂, SOF₂, SOF₄, SO₂, NO, and HF, were detected. From optical emission spectra, SF₂ was identified, revealing the SF₆ dissociation process might be carried out rapidly through an electron impaction reaction: SF₆ \rightarrow SF₂ + 4F. Subsequently, F₂ was formed via the recombination of F atoms.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Fluorine; PFCs; Discharge; Destruction; Optical emission spectroscopy

1. Introduction

Sulfur hexafluoride (SF₆) is widely used as an etching and etching-aid gas in manufacturing very large scale integration circuits. The emission of SF₆ from the semiconductor manufacturing process has recently increased greatly along with the output value of the semiconductor industry. However, SF₆ has a long lifetime in the atmosphere (\sim 3200 years), with a high global warming potential which is about 23,900 times higher than CO₂ [1].

Although the abatement of SF₆ emission is usually performed through thermal treatment or catalytic process, SF₆ is difficult to burn in the gas phase and thermally stable up to 500 °C [2]. In various discharge environments [2–13], SF₆ can be dissociated into lower sulfur fluorides in a low- to high-temperature reactor via a stepwise process: SF_x + e \rightarrow SF_{x-1} + F + e (6 $\geq x \geq 1$) [14].

The intermediate species of dissociation, SF_x [15], tend to recombine rapidly to SF_6 or reform into the highly toxic

0304-3894/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2008.01.010 products, such as S_2F_{10} (TLV = 0.01 ppm) and SF_4 (ceiling value = 0.1 ppm) (Table 1) [16], or highly corrosive and reactive fluorine gas (F₂) [2,5,9]. Hence, the qualitative analyses of byproducts were carried out in various plasma environments with different additives, and byproducts such as SOF₄, SO₂F₂, SOF₂, S₂OF₁₀, S₂O₂F₁₀, SO₂, SiF₄, OF₂, and F₂ were detected in an O₂-added radio-frequency (RF) plasma or dielectrical barrier discharge (DBD) [2,12]; S₂F₁₀, SF₄, SOF₂, SOF₄, SO₂F₂, SO₂, SO₃, and HF were produced by H₂O-added corona discharge or microwave (MW) plasma [13,17]. Air, H₂S or hydrocarbons were also added to reduce the production of sulfur oxyfluorides, but sulfur, CF₄, CO/CO₂ or NO/NO₂ would be formed [12,18].

So far, most plasma-abated studies have addressed the effective removal of fluorine compounds. In this study, the selectivity of byproducts, especially F_2 , in the effluents were measured and compared by using an atmospheric-pressure plasma with essential high electron density to abate SF₆. Moreover, various additives, such as H₂, O₂, H₂/O₂, and H₂O, were added into the mixtures to enhance the abatement capacity of SF₆, while hydrocarbons, such as C₂H₄ of CH₄, were not added to avoid the formation of carbon-containing compounds (CF₄, COF₂, CO or CO₂). In addition, the selectivity of other byproducts,

^{*} Corresponding author. Tel.: +886 7 3814526x5110; fax: +886 7 3830674. *E-mail address:* chtsai@cc.kuas.edu.tw (C.-H. Tsai).

Table 1

Threshold limit value (TLV) of the concentration of byproducts possibly produced from the abatement of SF_6 [16]

Compound	TLV or TWA ^a	Compound	TLV or TWA ^a
$\overline{S_2F_{10}}$	0.01 ppm 0.1 ppm (ceiling)	COF ₂ HE	2 ppm
SOF ₂	0.7 ppm	SO_2F_2	5 ppm
F ₂	1 ppm	SOF ₄	25 ppm _b
SO ₂	2 ppm		

^a TWA: time-weighted average.

^b (-) No data.

including HF, SO_2F_2 , SOF_2 , SOF_4 , SO_2 , and sulfur, as well as the conversion of SF_6 , were also compared.

2. Experimental

The experimental setup is shown schematically in Fig. 1. An electrodeless atmospheric microwave torch plasma system is assembled by using a commercially available magnetron (National Electronics YJ-1600, 2.45 GHz) with maximum stationary power of 5 kW in a continuous-wave mode. The microwave radiation passes through a circulator and a threestub tuner, and is then fed into a waveguide (ASTEX WR340), which is connected laterally with a resonant auxiliary cavity. A quartz tube (3.3-cm-o.d.) was located one-quarter wavelength from the shortened end of the waveguide and intersected with the waveguide and the resonator perpendicularly. In addition, the microwave plasma was ignited by inserting a tungsten wire into the resonant cavity from the top of the reactor and sparking in the waveguide.

The flow rate of high purity reactants that were supplied from compressed gas cylinders was adjusted with calibrated mass flow controllers, introduced into a gas mixer, and then injected into the top and side of the quartz tube. The well-mixed working gas passed through the quartz tube and entered the discharge zone of the reactor that equipped an outer cooling tube with water passed in the opposite direction, enabling the stabilization of the plasma torch. After completing the plasma-chemical reactions, the effluents flowed through the reactor. The final gas mixtures were then analyzed and exhausted at atmospheric pressure.

The composition of the reactants and products were mainly identified and quantified by an on-line Fourier transform infrared spectrometer (Nicolet, Avator 370). The FTIR analysis conditions were set as follows: spectral range = $4000-740 \text{ cm}^{-1}$, resolution = 0.5 cm^{-1} , number of scans = 8, gain = 4. The gas cell and transfer line from the reactor to FTIR were constantly heated in order to avoid condensation. The mole fraction of the product species was determined by a comparison with the response of the peak height of standard gas at the same wavenumber. However, no SF₄ and S₂F₁₀ were found in the effluents, and concentrations of H2, O2, and H2O were not measured. In addition, the qualitative analysis of F₂ was carried out by a residual gas analyzer (Extorr, XT200), while the mole fraction of F_2 was calculated via a mass balance by assuming unquantified F atoms were all converted into F_2 [19]. Moreover, the amount of sulfur deposition was also estimated by the mass balance of S atoms.

The experimental conditions are summarized as follows: the additives were H₂, O₂, H₂+O₂, H₂O; inlet additive/SF₆ molar ratios were: H₂/SF₆ (R_{H_2}) and O₂/SF₆ (R_{O_2}) = 0/1–5/1, H₂/O₂/SF₆ (R_{H_2/O_2}) = 1/1/1, 1/3/1, and 2/2/1, and H₂O/SF₆ (R_{H_2O}) = 1/1 and 4/1; system pressure (*P*) was operated at 101.3 kPa; applied MW power was 0.8 or 1.3 kW; the feeding concentration of SF₆ ([SF₆]) was kept at 1%; N₂ was the carrier gas, the temperature of the feed was at 303 K; total flow rate was at 20 or 10 slm (standard L/min).

The product compositions are based on molar concentrations of the effluent. The conversion of SF_6 (C_{SF_6}) and the selectivity of byproducts (SF for F atoms and SS for S atoms) in this study are defined as follows:

$$C_{\rm SF_6} = \frac{(\rm SF_6 \ converted)}{(\rm SF_6 \ fed \ to \ the \ reactor)} \times 100\%$$

 SF_A (or SS_A) = the fraction of F atoms (or S atoms for SS_A) from abated- SF_6 converting into product A (%)

For example, selectivity of $F_2 = ([F_2] \times 2)/([SF_6] \times C_{SF_6} \times 6) \times 100\%$

Fig. 1. Schematic of the atmospheric-pressure plasma system.

Table 2	
Comparisons of byproducts using different plasma	approaches and adding various additives

Plasma	Additive	Byproducts	Reference
MW	H ₂	F ₂ , Sulfur, HF	This study
RF ^a	H_2	HF, SiF ₄ , sulfur, SO ₂ , SO ₂ F ₂ , SOF ₂ , SOF ₄ , S ₂ F ₁₀ , S ₂ OF ₁₀ , S ₂ O ₂ F ₁₀	[18]
MW	O ₂	F_2 , sulfur, SO ₂ , SO ₂ F_2 , SOF ₂ , SOF ₄ , NOx	This study
MW	O_2	F_2 , SO_2F_2 , SO_2	[1]
MW	O ₂	SiF ₄ , SO ₂ F ₂ , SOF ₂ , FNO, FNS	[10]
DBD	O ₂	OF ₂ , F ₂ , SOF ₂ , SO ₂ F ₂ , SO ₂ , O ₃	[12]
MW	$H_2 + O_2$	F ₂ , sulfur, SO ₂ , HF, SO ₂ F ₂ , SOF ₂ , SOF ₄ , H ₂ O	This study
MW	H_2O	F ₂ , sulfur, SO ₂ , SO ₂ F ₂ , HF, SOF ₂ , SOF ₄	This study
MW	H ₂ O	SO ₂ , SO ₃ , HF	[13]
Corona	H_2O	S ₂ F ₁₀ , SF ₄ , SOF ₂ , SOF ₄ , SO ₂ F ₂ , SiF ₄ , COF ₂ , CF ₄ , HF, CO	[17]
Spark	H ₂ O	SO_2F_2 , SOF_2 , SO_2 , SiF_4	[3,4]
RF ^a	H_2S	SiF ₄ , SO ₂ , SO ₂ F ₂ , HF, SOF ₂ , SOF ₄ , sulfur	[20]

^a At 1.33 kPa (others are at 101.3 kPa).

3. Results and discussion

3.1. Byproducts by adding various additives

Table 2 listed the comparisons of byproducts using different plasma approaches and adding various additives. With the addition of H₂, the byproducts were only F₂, HF and yellow sulfur deposition. Fig. 2A shows the typical FTIR spectra before and after the abatement of SF₆ at 0.8 kW in mixtures of H₂/SF₆/N₂ at $R_{H_2} = 1$. Without SF₄, S₂F₁₀, SiF₄, and sulfur oxyfluorides were detected in this study, though they have been identified in a low-pressure RF plasma glass reactor with the addition of H₂ or H₂S [18,20] (Table 2).

When O₂ was added in SF₆/N₂ mixtures at $R_{O_2} = 1$ (Fig. 2B), F₂, sulfur oxyfluorides (including SO₂F₂, SOF₂, and SOF₄), and

Fig. 2. Typical FTIR spectra after the plasma abatement of SF_6 at inlet H_2/SF_6 molar ratio = 5 (A) and inlet O_2/SF_6 molar ratio = 5 (B) at 0.8 kW.

trace NO (in some cases) were produced. Though HF was not produced due to the H₂-free environment, the toxicity equivalents of decomposed byproducts were sometimes higher using O₂ as the additive as opposed to using H₂. Similar results have been reported in an RF plasma reactor [21]. However, FNS and FNO that were found in the O₂-containing MW plasma [10] as well as OF₂ and O₃ that were detected in the O₂-rich DBD reactor [12], were not found (Table 2).

Using a method of adding H_2O into the SF_6/N_2 mixtures, more and complex byproducts, including F_2 , HF, sulfur oxyfluorides, and elemental sulfur were formed because of both the H and O atoms involved in the reactions. However, SF_4 and S_2F_{10} that were yielded in the H_2O -added corona discharge [17] were not found (Table 2).

In order to change the inlet H/O atom ratio, H_2 and O_2 were added simultaneously. At a lower feeding concentration of H_2 , such as at $H_2/O_2/SF_6 = 1/1/1$, similar byproducts were found with the addition of H_2O . However, when the feeding of H_2 was elevated, causing the $H_2/O_2/SF_6$ ratio to reach 3/1/1, the formation of SO_2F_2 , SOF_2 , and SOF_4 were suppressed via the formation of more SO_2 .

3.2. Selectivity of F_2 and other byproducts

Table 3 shows that the most abundant F- and S-containing byproducts were F_2 and elemental sulfur (expressed as S_1), respectively, regardless of which additive (H_2 , O_2 , $H_2 + O_2$, or H_2O) was added. The selectivity of F_2 for adding various additives was very high and at least about 81% and was far greater than that of HF. Moreover, a majority of S atoms were converted to polysulfur via the aggregation of S or S_2 during subsequent quenching in the afterglow zone.

3.2.1. Addition of hydrogen

With the addition of H₂ in SF₆/N₂ mixtures at H₂/SF₆ = 1, the selectivity of F atoms for F₂ (SF_{F2}) was as high as 89.7%, with the selectivity of S atoms for elemental sulfur being 100%, and the minor byproduct was HF with F-atom selectivity of 10.3% (Table 3). It should be noted that the characteristics of byproducts resulting from the addition of H₂ to abate SF₆ in MW plasma are rarely cited in the literature, because it seems to be expected

Table 3

$\overline{R_{\mathrm{H}_{2}}}^{\mathrm{a}}$	R_{O_2}	$R_{ m H_2O}$	Selectivity of F atoms (%)				Selectivity of S atoms (%)					
			[F ₂]	[HF]	$[SO_2F_2]$	[SOF ₂]	[SOF ₄]	[S ₁]	[SO ₂]	$[SO_2F_2]$	[SOF ₂]	[SOF ₄]
0	0	0	100.0	0	0	0	0	100.0	0	0	0	0
1			89.7	10.3	0	0	0	100.0	0	0	0	0
5			82.2	17.8	0	0	0	100.0	0	0	0	0
	1		90.8	0.0	7.4	0.43	1.39	47.9	26.6	22.1	1.3	2.1
	5		81.3	0.0	15.6	0.78	2.27	13.8	33.6	46.9	2.3	3.4
1	1		83.9	9.3	5.8	0.33	0.65	63.8	16.8	17.5	1.0	1.0
3	1		85.5	14.5	0	0	0	61.7	38.3	0	0	0
		1.0	87.4	7.3	4.6	0.19	0.45	60.2	24.7	13.8	0.6	0.7
		4.0	81.2	12.9	5.3	0.33	0.22	58.8	24.0	15.9	1.0	0.3

Selectivities of byproducts resulting from SF₆ abatement for various inlet mixtures ($[SF_6]_{in} = 1\%, 10 \text{ slm}, 0.8 \text{ kW}$)

^a R_{O_2} = inlet O₂/SF₆ ratio; R_{H_2} = inlet H₂/SF₆ ratio; R_{H_2O} = inlet H₂O/SF₆ ratio.

that a large amount of HF will be produced, while this has not been found to be the case in this study. For example, the F atoms were converted mainly into HF with almost no F_2 being detected in the glass-made RF plasma reactor [18].

No SF₄ and S₂F₁₀ could be detected in the H₂/SF₆/N₂ environment, because the SF₆ dissociation reaction process was possible carried out mainly through an electron impaction reaction: SF₆ \rightarrow SF₂+4F [14,22]. The optical emission spectrum (Fig. 3A) in this H₂/SF₆/N₂ discharge showed that weak emission peaks of SF₂ (X¹A₁ \rightarrow C¹A₂ transition, at 304.3, 320.4, 336.7, 360.7 nm) [23–24] were identified. SF₅ and SF₄ species were also produced, although they disappeared quickly via the Penning dissociation reaction or the electron impact dissociation reaction, such as SF₅ \rightarrow SF₄+F and SF₄ \rightarrow SF₃+F [14–15], resulting in no S₂F₁₀ and SF₄ being found in the effluents. However, large amounts of F atoms resulted in the formation of F₂, which was formed primarily in and immediately downstream of the discharge zone via the reaction of 2F + M \rightarrow F₂ + M, with M representing the third body or wall [19,25].

Fig. 3. Optical emission spectra of the $H_2(5\%)/SF_6/N_2$ (A) and $O_2(5\%)/SF_6/N_2$ (B) plasmas.

The selectivity of S_1 was almost 100%, since no other Scontaining compounds could be detected. Yellow depositions were yielded, as well as weak emission peaks of active S_2 (at 283.0, 286.5, 289.5, 295.5 nm) (Fig. 3A) and S (at 850–930 nm) [26–27], indicating elemental sulfur was formed via the polymerization of S or S_2 .

3.2.2. Addition of oxygen

With the addition of O₂, Table 3 shows a similar selectivity of F₂ was found than when H₂ was added, ranging from 8.3% to 90.8%, while the selectivity of F atoms for SO₂F₂, SOF₂, and SOF₄ increased with elevated R_{O_2} and reached 15.6%, 0.78%, and 2.27%, respectively, at $R_{O_2} = 5$. Moreover, a higher selectivity of S₁ and SO₂ was found at a lower R_{O_2} , 47.9% and 26.6%, respectively, at $R_{O_2} = 1$ (Table 3). In addition, it should be noted that a trace of NO was formed via N₂ reacting with O₂ in an O₂-containing environment.

An optical emission spectrum in the $O_2/SF_6/N_2$ discharge (Fig. 3B) showed that the emission of SF_2 , N_2 , and S_2 . SF_2 is not only a major precursor just in the H₂-added condition in the sequence of reactions following the dissociation of SF_6 , but is also an important precursor in the formation of SO_2F_2 [22]. However, since O_2 is an efficient quencher, resulting in some electronically excited species, ionic molecular nitrogen, atomic N or O cannot be identified [28].

In Fig. 3, observation of the representative emission spectrum in both H₂- and O₂-containing SF₆/N₂ discharge also shows that active N₂ played an important role in the translation of energy. N₂ from the second positive band $(C^3\Pi \rightarrow B^3\Pi$ transition, at 300–550 nm) and N₂ from the first positive band $(B^3\Pi \rightarrow A^3\Sigma$ transition, at 550–900 nm), were clearly identified [29–33].

3.2.3. Addition of H_2/O_2 or steam

In order to simulate a different inlet H/O atom ratio, H₂ and O₂ were added simultaneously. When less H₂ was added with a H₂/O₂/SF₆ ratio of 1/1/1, the byproduct species were similar to those when H₂O was added. The major byproducts were F₂, sulfur and SO₂, and the minor species was SO₂F₂, with traces of HF, SOF₂ and SOF₄. The selectivity of F₂ was 83.9%, and the selectivity of S₁ and SO₂ were 63.8% and 16.8%, respectively

Table 4 Conversion of SF₆ for various inlet mixtures ($[SF_6]_{in} = 1\%, 10 \text{ slm}, 0.8 \text{ kW}$)

Mixtures	Conversion of SF ₆ (%)	Mixtures	Conversion of SF ₆ (%)
Without additive $H_2/SF_6 = 1/1$ $H_2/SF_6 = 5/1$	33.7 93.8 97.7	$H_2/O_2/SF_6 = 1/1/1$ $H_2/O_2/SF_6 = 3/1/1$	95.9 96.9
$O_2/SF_6 = 1/1$ $O_2/SF_6 = 5/1$	91.4 94.5	$H_2O/SF_6 = 1/1$ $H_2O/SF_6 = 4/1$	96.9 92.0

(Table 3). However, the addition of less H_2 with O_2 or H_2O resulted in the most complicated effluents in the SF₆ plasma abatement system.

When adding more H₂ to reach a H₂/O₂/SF₆ ratio of 3/1/1, sulfur oxyfluorides disappeared but a large amount of F₂ and sulfur remained as a result of the formation of more HF and SO₂, with the selectivities of F- and S-atoms being 14.5% and 38.3%, respectively (Table 3). The results show that a higher concentration of H₂ than O₂ not only elevated the SF₆ conversion, but also inhibited the formation of sulfur oxyfluorides in an H₂/O₂/SF₆ environment.

3.3. Conversion of SF₆

Table 4 shows that adding the additive to the SF₆/N₂ mixture and the inlet additive/SF₆ molar ratios apparently enhances the conversion of SF₆ (C_{SF_6}). The enhancement level of various additives on C_{SF_6} can be listed in the following order: +H₂ > +O₂ \gg no additive. C_{SF_6} was only 33.7% with no additives because of the recombination of SF₆ in the discharge environment.

When H₂ was added, C_{SF_6} increased significantly and reached 93.8% and 97.7% when the inlet H₂/SF₆ molar ratio was 1 and 5, respectively, at 0.8 kW (Table 4). Because H₂ was easily dissociated into active species, such as H atoms, reacting with SF₆ and its fragments to form highly stable products, mainly F₂, HF, and sulfur, the result was not only a significant improvement in C_{SF_6} , but also an inhibition of the recombination of SF₆.

With the addition of O_2 , C_{SF_6} also apparently elevated and reached 91.4–94.5% at inlet O_2/SF_6 ratio = 1–5, respectively, at 0.8 kW (Table 4), because SF₆ and its fragments react with O_2 and O atoms to form SO₂ and sulfur oxyfluorides (such as SO₂F₂, SOF₂, and SOF₄), which could inhibit the recombination of SF₆.

H₂O was also used as an additive, and the C_{SF_6} reached 96.9% when the inlet H₂O/SF₆ ratio (R_{H_2O}) was 1, while it was slightly decreased to 92.0% at $R_{H_2O} = 4$ because a large amount of H₂O resulted in a reduction of electron mean energy and plasma density. In addition, two inlet molar ratios of H₂/O₂ were performed in order to alter the inlet H/O atom ratio, and a little higher C_{SF_6} was found when compared to adding only H₂ (at $R_{H_2} = 1$) or O₂ (at $R_{O_2} = 1$), reaching 95.9% and 96.9% for H₂/O₂/SF₆ = 1/1/1 and 3/1/1, respectively (Table 4).

Finally, when a higher total flow rate with a higher applied power was also examined, the C_{SF_6} was as high as 99.9% at 20 slpm with 1.3 kW of power at $H_2/O_2/SF_6 = 2/2/1$. Hence, this

microwave plasma torch can effectively destroy high concentrations of SF_6 at a higher flow rate with the addition of proper additives at a high enough power.

4. Conclusions

In this study, a large amount of F₂ was found from the SF₆ plasma abatement process when H_2 , O_2 , $H_2 + O_2$, or H_2O was added into the mixtures to enhance the removal efficiency of SF₆. However, complicated byproducts, such as SO₂, sulfur oxyfluorides, and NO were formed in the O atom-containing $(O_2, H_2 + O_2, \text{ or } H_2O)$ discharge environment, resulting in the only H₂-added discharge system was a simpler and better alternative. Because only F2, HF and elemental sulfur were produced in the H₂/SF₆/N₂ mixtures, and because SF₆ was abated with the addition of H₂, the sequential chemical absorption of F₂ within a single, dry plasma/absorber hybrid reactor is possible. The treatment of waste gases from the abatement of SF₆ emission is currently carried out via a pipe-end wet scrubber. However, an in-situ process for removing toxic or reactive byproducts, such as F₂, in the same reactor should be preferred, because the process can reduce the corrosion of transportation pipes and reduce the loading of wastewater treatment.

Acknowledgments

We thank the National Science Council in Taiwan for the financial support for this research work (Grant NSC 93-2211-E-151-006 and 94-2211-E-151-001).

References

- V. Mohindra, H. Chase, H.H. Sawin, M.T. Mocella, Abatement of perfluorocompounds (PFC_S) in a microwave tubular reactor using O₂ as an additive gas, IEEE. Trans. Plasma Sci. 10 (1997) 399–407.
- [2] R.J. Van Brunt, J.T. Herron, Fundamental processes of SF₆ decomposition and oxidation in glow and corona discharge, IEEE Trans. Electr. Insul. 25 (1990) 75–93.
- [3] A. Derdouri, J. Casanovas, R. Grob, J. Mathieu, Spark decomposition of SF₆/H₂O mixture, IEEE Tras. Electr. Insul. 24 (1989) 1147–1157.
- [4] O. Kóréh, T. Rikker, G. Molnar, B.M. Mahara, K. Torkus, J. Borossay, Study of decomposition of sulfur hexafluoride by gas chromatography/mass spectrometry, Rapid. Commun. Mass Spectrom. 11 (1997) 1643–1648.
- [5] I. Coll, A.M. Casanovas, L. Vial, A. Gleizes, J. Casanovas, Chemical kinetics modelling of a decaying SF₆ arc plasma in the presence of a solid organic insulator, copper, oxygen and water, J. Phys. D: Appl. Phys. 33 (2000) 221–229.
- [6] L. Vial, A.M. Casanovas, I. Coll, J. Casanovas, Decomposition of highpressure (400 kPa) SF₆ and SF₆/N₂(10:90) mixtures submitted to negative or 50 Hz ac corona discharges in the presence of water vapour and/or oxygen, J. Phys. D: Appl. Phys. 34 (2001) 2037–2051.
- [7] J. Jewett, Atmospheric Pressure Abatement of Perfluorinated Compounds (PFCs) in Industrial Exhaust Streams, Future Fab International, February 2002, p. 12.
- [8] M. Shih, W.J. Lee, C.H. Tsai, P.J. Tsai, C.Y. Chen, Decomposition of SF₆ in a RF plasma environment, J. Air Waste Manage. Assoc. 52 (2002) 1274–1280.
- [9] J. Diaz, A.M. Casanovas, J. Casanovas, Effect of the percentage of SF₆ (100%–10%–5%) on the decomposition of SF₆–N₂ mixtures under negative dc coronas in the presence of water vapour or oxygen, J. Phys. D: Appl. Phys. 36 (2003) 1558–1564.

- [10] Y. Kabouzi, M. Mosan, J.C. Rostaing, C. Trassy, D. Guérin, D. Kérock, Z. Zakrzewski, Abatement of perfluorinated compounds using microwave plasma at atmospheric pressure, J. Appl. Phys. 93 (2003) 9483–9496.
- [11] M.B. Chang, H.M. Lee, Abatement of perfluorocarbons with combined plsama catalysis in atmospheric-pressure environment, Catal. Today 89 (2004) 109–115.
- [12] H.M. Lee, M.B. Chang, Y.W. Kuan, Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric pressure plasma, J. Air Waste Manage. Assoc. 54 (2004) 960–970.
- [13] M.T. Radoiu, Studies on atmospheric plasma abatement of PFC_S, Radiat. Phys. Chem. 69 (2004) 113–120.
- [14] K.R. Ryan, I.C. Plumb, A model for the etching of silicon in SF₆/O₂ plasma, Plasma. Chem. Plasma. Process. 10 (1990) 207–229.
- [15] L.E. Kline, Electron and chemical kinetics in the low-pressure RF discharge etching of silicon in SF₆, IEEE Trans. Plasma Sci. PS-14 (1986) 145–155.
- [16] G.D. Griffin, M.G. Nolan, C.E. Easterly, I. Sauers, P.C. Votaw, Concerning biological effects of spark-secomposed SF₆, IEEE Proc. 137 (Pt.A) (1999) 221–227.
- [17] M. Piemontesi, R. Pietsch, W. Zaengl, Analysis of decomposition of products of sulfur hexafluoride in negative dc corona with special emphasis on content of H₂O and O₂, in: Conference Record of the 1994 IEEE International Symposium on Electrical Insulation Pittsburgh, PA USA, 1994, pp. 499–503.
- [18] M. Shih, Reaction Mechanism of Sulfur Hexafluoride in Oxidation and Reduction RF Plasma Environments, Ph.D. Dissertation, National Cheng Kung University, Taiwan, 2003.
- [19] G. Smolinsky, D.L. Flamm, The plasma oxidation of CF₄ in a tubularalumina fast-flow reactor, J. Appl. Phys. 50 (1979) 4982–4987.
- [20] M. Shih, W.J. Lee, C.Y. Chen, Decomposition of SF₆ and H₂S mixture in radio frequency plasma environment, Ind. Eng. Chem. Res. 42 (2003) 2906–2912.
- [21] Y.F. Wang, M. Shih, C.H. Tsai, P.J. Tsai, Total toxicity equivalents emissions of SF₆, CHF₃ and CCl₂F₂ decomposed in an RF plasma environment, Chemosphere 62 (2006) 1681–1688.

- [22] K.R. Ryan, Aspects of the chemistry of SF₆/O₂ plasmas, Plasma. Chem. Plasma. Process. 9 (1989) 483–496.
- [23] Q. Li, J. Shu, Q. Zhang, S. Yu, L. Zhang, C. Chen, X. Ma, Electronic band systems of SF₂ radicals observed by resonance-enhanced multiphoton ionization, J. Phys. Chem. A 102 (1998) 7233–7240.
- [24] Q. Li, Q. Zhang, J. Shu, S. Yu, Q. Song, C. Chen, X. Ma, A new excited electronic state of SF₂ radical observed by resonance-enhanced multiphoton ionization, Chem. Phys. Lett. 305 (1999) 79–84.
- [25] C.J. Ultee, The homogeneous recombination rate constant of F atoms at room temperature, Chem. Phys. Lett. 46 (1977) 366–367.
- [26] K.E. Greenberg, P.J. Hargis, Detection of sulfur dimers in SF₆ and SF₆/O₂ plasma-etching discharge, Appl. Phys. Lett. 54 (1989) 1374–1376.
- [27] M. Tuszewski, W.K. Scarborough, R.R. White, Spectrometry of 0.46 and 13.56 MHz Ar/SF₆ inductive plasma discharge, J. Appl. Phys. 96 (2004) 1811–1818.
- [28] A. Ricard, The production of active plasma species for surface treatments, J. Phys. D: Appl. Phys. 30 (1997) 2261–2269.
- [29] Q.S. Yu, E. Krentsel, H.K. Yasuda, Optical emission diagnostics in cascade arc plasma polymerization and surface modification progresses, J. Polym. Sci. Pol. Chem. 36 (1998) 1583–1592.
- [30] E.A.H. Timmermans, J. Jonkers, A. Rodero, M.C. Quintero, A. Sola, A. Gamero, D.C. Schram, J.A.M. van der Mullen, The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy.2. Plasmas at reduced pressure, Spectrochim. Acta B 54 (1999) 1085–1098.
- [31] H. Matsui, H. Saeki, T. Kawai, H. Tabata, B. Mizobuchi, N doping using N₂O and NO sources: from the viewpoint of ZnO, J. Appl. Phys. 95 (2004) 5882–5888.
- [32] H.W. Liang, Y.M. Lu, D.Z. Shen, Y.C. Liu, J.F. Yan, C.X. Shan, B.H. Li, Z.Z. Zhang, J.Y. Zhang, X.W. Fan, P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO, Phys. Status Solidi A 202 (2005) 1060–1065.
- [33] C.H. Tsai, H.H.C.J.G. Yang, Jou H.M. Lee, Reducing nitric oxide into nitrogen via a radio-frequency discharge, J. Hazard. Mater. 143 (2007) 409–414.